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Why predict protein structure?

Can we use (pure) physics-based methods?
Knowledge-based methods

Approaches to protein structure prediction (i.e., what
information can we leverage?)

— Template-based (“homology”) modeling (e.g., Phyre2)

— Ab initio modeling (e.g., Rosetta)

— Multiple sequence alignments (coevolution)

Deep learning methods for protein structure prediction

— First-generation deep learning methods: learning inter-residue
distances from multiple sequence alignments

— Second-generation deep learning methods: learning the entire
structure

RNA structure prediction



Why predict protein structure?



Problem definition

» Given the amino acid sequence of a protein, predict its
three-dimensional structure

« Each protein adopts many structures. We want the average
structure, which is roughly what's measured experimentally.

— This will depend on experimental conditions: for example, is the
protein bound to a drug and/or other molecules (and which ones)?
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Why predict protein structures rather
than determining them experimentally?

« Because predicting them computationally is
(hopefully) cheaper and faster

* This answer is different from the answer to “why
perform MD simulations?”

— MD simulations are computationally expensive but
often allow one to access information that simply can't
be observed with existing experimental methods



How are predicted structures used?

+ ldentifying the mechanism by which a protein functions

— What is the structural basis for the protein’s function? If we think
of the protein as a machine, how does that machine work?

— How do genetic mutations alter that function (e.g., cause
disease)?

— How one might alter that protein’s function (e.g., with a drug)?
* Drug discovery
— Computational screening of candidate drug compounds
— Figuring out how to optimize a promising candidate compound
— Figuring out which binding site to target
* Interpreting experimental data

— For example, a computationally predicted approximate structure
can help in determining an accurate structure experimentally, as
we’ll see later in this course 7



Why not just solve the structures
experimentally?

« Structures of certain proteins are very difficult to determine
experimentally

« Sequence determination far outpaces experimental structure
determination

— We already have far more sequences than experimental structures, and
this gap will likely grow
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Can we use (pure) physics-based
methods?



Why not just simulate the folding
process by molecular dynamics?

This is
possible for
some proteins.

Chignolin Trp-cage Villin
Example:
Simulation vs.
experiment for 12
fast-folding

WW domain Protein B proteins, up to 80

residues each

Lindorft-
Larsen et al.,
Science, 2011
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For most proteins, this doesn’t (yet) work

1. Folding timescales are usually much longer than
simulation timescales.

2. Current molecular mechanics force fields aren’t
always sufficiently accurate.

3. Disulfide bonds form during the real folding
process. This is hard to mimic in simulation.

Simulating folding is important for understand how the folding
process works (that is, how a protein gets from its unfolded state to
its folded state—the original “protein folding problem”), but is not
necessary to predict structure. Structure prediction is an easier
problem (though still tough!).



Knowledge-based methods



Basic idea behind knowledge-based
(data-driven) methods

 The PDB contains over 180,000 experimentally

determined protein structures

« Can we use that information to help us predict

new structures?
e Yes!

Me
WANTS
THE *
DATA

http://www.duncanmalcolm.com/blog/startup-data-analytics-metric-

We can also use
the more than
250 million
protein sequences
in the UniProt
database
13



Questions for discussion

f we want to predict the structure of protein X,
now does knowing structures of other proteins
nelp?

f we want to predict the structure of protein X,
now does knowing amino acid sequences of
other proteins help (in particular, sequences of
proteins whose structures we don’'t know)?

14



Proteins with similar sequences tend to
have similar structures

* Proteins with similar sequences tend to be
homologs, meaning that they evolved from a
common ancestor

* The fold of the protein (i.e., its overall structure)
tends to be conserved during evolution

* This tendency is very strong. Even proteins with
15% sequence identity usually have similar
structures.

— During evolution, sequence changes more quickly
than structure

15



Percentage Of Coverage
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For most human protein sequences, we

can find a homolog with known structure

Unstructured
(disordered)
amino acids

o

90%

80%
70%
60%
50%
40%
30%
20%
10%

0%

40-50
50-60
= 60-70
= 70-80
m 80-90
| m90-100

el ol dl ol
0 W WL
NN NN
N D OO

—

P R R RERPRERPREREREEREENNNNNDNDN

O OWOWOWOUWOVUOVUOVUOWODOOOO OO

OO0 LWLV OWUOWUOUOOODODO K K-

NDSOOOONPBOODONPPOOODON
Year

Schwede, Structure 2013

The plot shows the
fraction of amino acids in
human proteins that can
be mapped to similar
sequences in PDB
structures. Different
colors indicate %
sequence identity.

As of 2017, 70% of human proteins—and well over 90% of
human drug targets—had >30% sequence identity to a protein

of known structure. As of today, those numbers are even higher!
Somody et. al, Drug Discovery Today, 2017



What if we can’t identify a homolog in
the PDB?

« \We can still use information based on known
structures

— We can construct databases of observed structures of
small fragments of a protein

— We can use the PDB to build empirical, “knowledge-
based” energy functions
* We can also extract substantial information from
sequences of homologs whose structure has not
been determined

— Again, exploit the fact that proteins with similar
sequence tend to have similar structure

17



Approaches to protein structure prediction
(i.e., what information can we leverage?)

18



Template-based ("homology”) modeling
(e.g., Phyre2)



Template-based structure prediction:

basic workflow

User provides a query sequence with unknown
structure

Search the PDB for proteins with similar
sequence and known structure. Pick the best
match (the template).

Build a model based on that template

— One can also build a model based on multiple
templates, where different templates are used for
different parts of the protein.

20



What does it mean for two sequences
to be similar?

« Basic measure: count minimum number of amino
acid residues one needs to change, add, or
delete to get from one sequence to another

— Sequence identity.: amino acids that match exactly
between the two sequences

— Not trivial to compute for long sequences, but there
are efficient dynamic programming algorithms to do so

21



What does it mean for two sequences
to be similar?

 \We can do better

— Some amino acids are chemically similar to one
another (example: glutamic acid and aspartic acid)

— Sequence similarity is like sequence identity, but does not
count changes between similar amino acids

O O O

O
HO)J\l/\/U\OH HO)J\‘/Y

NH., NH, OH

Glutamic acid Aspartic acid
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What does it mean for two sequences
tO be S|m|lar7 Optional material

We can do even better

— Once we've identified some homologs to a query
sequence (i.e., similar sequences in the sequence
database), we can create a profile describing the
probability of mutation to each amino acid at each position

— We can then use this profile to search for more homologs

— lterate between identification of homologs and profile
construction

— Measure similarity of two sequences by comparing their
profiles

— Often implemented using Hidden Markov Models (HMMs)
« For example, the HHBIits software tool

23



We’'ll use the Phyre2 template-based
modeling server as an example

 Try it out: http://www.sbg.bio.ic.ac.uk/phyre2/

* Why use Phyre2 as an example of template-
based modeling?

— Among the better automated structure
prediction web-servers

— Among the most widely used, and arguably
the easiest to use

— Approach is similar to that of other template-
based modeling methods

— Great name!

24


http://www.sbg.bio.ic.ac.uk/phyre2/

Phyre2 algorithmic pipeline
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Phyre2 algorithmic pipeline

Identify similar sequences in
protein sequence database
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Phyre2 algorithmic pipeline

Choose a template
structure by: i

(1) comparing sequence
profiles and

| Muiiglo @ (2) predicting secondary
T . alignment £ 2 structure for each residue
Sequence i in the query sequence
PSIPRED . and comparing to
memen . | candidate template
| — AAAAAA structures. Secondary
Secondary structure (alpha helix,
prediction beta sheet, or neither) is

-

i predicted for segments of
guery sequence using a
neural network trained on
known structures.
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Phyre2 algorithmic pipeline

Query
sequence

HHbilits

PSIPRED

Compute optimal
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side chains i
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Phyre2 algorlthmlc pipeline
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Build a crude backbone model (no side chains) by simply superimposing
corresponding amino acids. Some of the query residues will not be modeled,
because they don’t have corresponding residues in the template (insertions).
There will be some physical gaps in the modeled backbone, because some
template residues don’t have corresponding query residues (deletions).



Phyre2 algorlthmlc pipeline
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Alignment between query and template

Use loop modeling to patch up defects in the crude model due to insertions and
deletions. For each insertion or deletion, search a large library of fragments (2—15
residues) of PDB structures for ones that match local sequence and fit the
geometry best. Tweak backbone dihedrals within these fragments to make them
fit better.
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Phyre2 algorithmic pipeline

Add side chains. Use a
database of commonly
observed structures for each
side chain (these structures
are called rotamers). Search
for combinations of
rotamers that will avoid
steric clashes (i.e., atoms
ending up on top of one
another).
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Modeling based on multiple templates

* In “intensive mode,” Phyre
2 will use multiple templates
that cover (i.e., match well
to) different parts of the
query sequence.

— Build a crude backbone
model for each template

— Extract distances between
residues for “reliable” parts
of each model

— Perform a simplified protein
folding simulation in which
these distances are used as
constraints. Additional
constraints enforce predicted
secondary structure

— Fill in the side chains, as for
single-template models

You’re not responsible for this

Nomal Phyre protocol
Multiple high-scoring models covering different
regions of query

~ €
y ﬁa f&‘?’ s
5% .
@3 I
- Yol
@ -.aj

Extract Ca-Ca distance
constraints from models

Backbone and
side chain addition

| )\ J\ )
F&/ Poing | | |
Constrained Ab inito Constrained

Poing: Synthesize from virtual ribosome.
Springs for constraints. Ab iniio modeling

of missing regions. Backbone and side chain
reconstruction.

LA Kelley et al.,
Nature Protocols 32
10:845 (2015)



Ab initio modeling (e.g., Rosetta)



ADb Initio structure prediction

* Also known as “de novo structure prediction”
 Many approaches proposed over time

* Probably the most successful is fragment

assembly, as exemplified by the Rosetta
software package

34



We'll use Rosetta as an example of
ab initio structure prediction

Software developed over the last 25-30 years by David
Baker (U. Washington) and collaborators

Software at: https://www.rosettacommons.org/software
Structure prediction server: http://robetta.bakerlab.org/
Why use Rosetta as an example?

— Among the better ab initio modeling packages (for
some years it was the best)

— Approach is similar to that of many ab initio modeling
packages

— Rosetta provides a common framework that has
become very popular for a wide range of molecular
prediction and design tasks, including protein design



https://www.rosettacommons.org/software
http://robetta.bakerlab.org/

Key ideas behind Rosetta

« Knowledge-based energy function
— In fact, two of them:

« The “Rosetta energy function,” which is coarse-grained
(i.e., does not represent all atoms in the protein), is used
in early stages of protein structure prediction

 The “Rosetta all-atom energy function,” which depends
on the position of every atom, is used in late stages
* A knowledge-based strategy for searching
conformational space (i.e., the space of possible
structures for a protein)

— Fragment assembly forms the core of this method

36



Rosetta energy function

At first this was the only energy function used by
Rosetta (hence the name)

« Based on a simplified representation of protein
structure:
— Do not explicitly represent solvent (e.g., water)
— Assume all bond lengths and bond angles are fixed

— Represent the protein backbone using torsion angles
(three per amino acid: ¢, ¥, w)

— Represent side chain position using a single “centroid,”
located at the side chain’s center of mass

« Centroid position determined by averaging over all
structures of that side chain in the PDB

37



Rosetta energy function

TABLE I

CoMPONENTS OF RoSETTA ENERGY FUNCTION?

Description
(putative
Name physical origin) Functional form Parameters (values)
env” Residue i = residue index
environment Z —In [P(aa;|nb;)] aa = amino acid type
(solvation) i nb = number of neighboring residues® (0, 1, 2... 30, >30)
pair” Residue pair i, j = residue indices
interactions Z Z In P(aa,-., aa; |S,‘jd.‘,’) aa = amino acid type )
(electrostatics, 53 P(aa;|s;id;j) P(aa;|s;d;) d = centroid—centroid distance (10-12,7.5-10,5-75, <5 A)
disulfides) s = sequence separation (>8 residues)
Ss? Strand pairing m, n = strand dimer indices; dimer is two consecutive
(hydrogen SchemeA : 8S4¢ + SShy + SSa strand residues
bonding) V = vector between first N atom and last C atom of dimer

SchemeB : SS;4 +SSp, + SSas

where
$S49 = ;z; ~10 [P($yn; Omnldomns SPruns Sn)]
SSh» = ; Z’; — 10 [P(hbyun|doiny Sn)]
S = ;; — 10 [P(dypn]Sn)]

S84y = Z Z —In [P(dmnamn“’nn Pn)]

m n>m

From Rohl et al., Methods in Enzymology 2004

m = unit vector between V,,, and V,, midpoints
X = unit vector along carbon—oxygen bond of first dimer
residue

y = unit vector along oxygen—carbon bond of second dimer
residue
¢, 6 = polar angles between V,,, and V,. (36° bins)
hb = dimer twist, > 0.5(| - x| + | - yi|) (< 0.33,
k=mn

0.33-0.66,0.66-1.0, 1.0-1.33,1.33-1.6,1.6-1.8,1.8-2.0)
d = distance between V,, and V, midpoints (< 6.5 A)
o = angle between V,, and M (18" bins)
sp = sequence separation between dimer-containing

strands (< 2, 2-10, > 10 residues)

s = sequence separation between dimers (>5 or >10)
p = mean angle between vectors 7, £ and 71, y (180° bins) 3

You’re not responsible for the details!



Rosetta energy function

sheet® Strand Nsheets = Number of sheets
arrangement —In [P(nshcclsnloncstrands|nstrands )]
Mione strands = NUumber of unpaired strands

Ngranas = total number of strands
HS Helix—strand m = strand dimer index; dimer is two consecutive strand
packing Z Z = In [P(Gmn, Yy [SPmnimn)] residues
mon n = helix dimer index; dimer is central two residues of four
consecutive helical residues
V = vector between first N atom and last C atom of dimer
¢, 8 = polar angles between V,,, and V, (36° bins)
sp = sequence separation between dimer-containing helix
and strand (binned < 2, 2-10, >10 residues)
d = distance between V,, and V,, midpoints (< 12 A)

into sheets

g Radius of i, j = residue indices
gyration (vdw (@) d = distance between residue centroids
attraction;
solvation)
cbeta Cp3 density i = residue index
(solvation; Y - Peompact (nbish) sh = shell radius (6, 12 A) .
correction - Prandom (nb, 3,,) nb = number of neighboring residues within shell/
for excluded Peompact = probability in compact structures assembled
volume effect from fragments
introduced by Prandom = probability in structures assembled randomly
simulation) from fragments
vdw? Steric repulsion 5 i, j = residue (or centroid) indices
(’3 1) d = interatomic distance
Z Z s dij < 1jj r = summed van der Waals radii”

i

, This list of terms is incomplete, as more have been added
From Rohl et al., Methods in Enzymology 2004

Updated version with more terms: Alford et al., Journal of

You’re not responsible for the details! ) ]
Chemical Theory and Computation, 2017



Rosetta energy function: take-aways

* The (coarse-grained) Rosetta energy function is
essentially entirely knowledge-based

— Based on statistics computed from the PDB

« Many of the terms are of the form —In[P(A)] (that
is, —loge[P(A)]), where P(A) is the probability of
some macrostate A

— This is essentially the free energy of macrostate A.
Recall definition of free energy:

G, =—k,T log, (P(A)) P(A)= CXP(_G% T)

40



Rosetta all-atom energy function

« Still makes simplifying assumptions:
— Do not explicitly represent solvent (e.g., water)
— Assume all bond lengths and bond angles are fixed

« Functional forms are a hybrid between molecular
mechanics force fields and the (coarse-grained) Rosetta
energy function
— Partly physics-based, partly knowledge-based

41



Are these potential energy functions or
free energy functions?

« The molecular mechanics force fields discussed in
previous lectures are potential energy functions

* One can also attempt to construct a free energy function,
where the energy associated with a conformation is the
free energy of the set of “similar” conformations (for some
definition of “similar”)

« The Rosetta energy functions are approximate free energy
functions (despite sometimes being referred to as potential
energy functions)

— This means that searching for the “minimum” energy is more valid
(as a way to determine structure)

— Nevertheless, typical protocol is to repeat the search process
many times, cluster the results, and report the largest cluster as

the solution. This rewards wider and deeper wells. 42



How does Rosetta search the
conformational space?

* Two steps:
— Coarse search: fragment assembly

— Refinement

* Perform coarse search many times, and then
perform refinement on each result

43



Coarse search: fragment assembly

« Uses a large database of 3-residue and 9-residue fragments,
taken from structures in the PDB

« Monte Carlo sampling algorithm proceeds as follows:
1. Start with the protein in an extended conformation
2. Randomly select a 3-residue or 9-residue section
3. Find a fragment in the library whose sequence resembles it
4.

Consider a move in which the backbone dihedrals of the
selected section are replaced by those of the fragment.
Calculate the effect on the entire protein structure.

5. Evaluate the Rosetta energy function before and after the
move

6. Use the Metropolis criterion to accept or reject the move
/. Return to step 2

* The real search algorithm adds some bells and whistles "



Refinement

* Refinement is performed using the Rosetta all-
atom energy function, after building in side

chains

« Refinement involves a combination of Monte
Carlo moves and energy minimization

 The Monte Carlo moves are designed to perturb
the structure much more gently than those used
In the coarse search

— Many still involve the use of fragments

45



Example: structure prediction by
Rosetta

* Fragment assembly for a small protein

Final conformation from
Rosetta fragment assembly
e Experimentally determined

structure

Note: This is not a full Rosetta structure prediction — just initial steps (doesn’t
include refinement, multiple simulations, etc.)

Hyun Soo Jeon



Example: structure prediction by
Rosetta

* During Monte Carlo sampling, energy usually decreases

but sometimes increases

Rosetta energy

%?\
I\

O
/

7.086

Hyun Soo Jeon



Foldlt: Protein-folding game

 https://fold.it/

« Basic idea: allow players to optimize the Rosetta
all-atom energy function
— (Game score is negative of the energy (plus a constant)

AOO Foldit :
@ Pull Mode Rank: 119 Score: 9133 » Group Competition
¥ Scloist Competition

w This hydrophobic sidechain is | (soloist)
.’ Pig=w cxposed. |t should point < 123: Grand Challenge 7 ~ 17 antumndays
A a inward! X &

9133 9133

130
9127
1

48

1 -
: Send PR

A Chat-Global @ X autoshow

» Duels » Modes P Notifications X auto show


https://fold.it/

Foldit - 1-1: One Small Clash

e O 6 -

A Actions

» Undo

» Menu

Score: | 7940 of 7900

&

You have completed
1 of 31 intro puzzles!

o 4

0:19

Next is: 1-2: Swing It Around!

[> B4 Puzzle Menu
Next Puzzle =~ Replay PUZZJ(e

|

1-1: One Small Clash
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Multiple sequence alignments
(coevolution)

50



We've discussed two approaches to
protein structure prediction

« Template-based modeling (homology modeling)

— Used when one can identify one or more likely
homologs of known structure

* Ab initio structure prediction
— Does not require any homologs

— Even ab initio approaches usually take advantage of
available structural data, but in more subtle ways

What if we know sequences of many homologs, but
don’t have structures for any of them?

51



Amino acids in direct physical contact tend to
covary or “coevolve” across related proteins

For example, a
mutation that causes
one amino acid to get
bigger is more likely to
preserve protein

! structure and function

(and thus survive) if

% another amino acid

gets smaller to make
space

% @

N ¢

< O D

7




Amino acids in direct physical contact tend to
covary or “coevolve” across related proteins

R D
R D inference
R D N
K E
<—
> : constraint
K E C
W Vv contact in 3D
W Vv

coevolution

From: https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/



https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/

How can we use this observation to
predict protein structure?

« Given many sequences of related proteins (whose
structure is assumed to be similar), look for amino
acids that coevolve. They are probably close
together.

* This idea has been around for several decades, but
it only became practically useful after 2010, thanks
to:

— Adramatic increase in amount of sequence data available
— Better computational methods

Protein 3D Structure Computed from Evolutionary PLoS ONE, 2011
Sequence Variation

Debora S. Marks'*?, Lucy J. Colwell?>®, Robert Sheridan®, Thomas A. Hopf', Andrea Pagnani®, Riccardo 54
Zecchina®®, Chris Sander®



Deep learning methods for protein
structure prediction

55



First-generation deep learning methods:
learning inter-residue distances from
multiple sequence alignments

56



Deep learning of inter-residue distances

First generation of deep learning methods for protein structure
prediction (including the original AlphaFold method and previous work
by academic groups)

Distance-based protein folding powered by V45,2019
deep learning

Jinbo xu>'  TTI Chicago

Improved proteinstructure predictionusing  Nature, 2020
potentialsfromdeeplearning

https://doi.org/10.1038/s41586-019-1923-7 Andrew W. Senior"**, Richard Evans'*, John Jumper"*, James Kirkpatrick'#, Laurent Sifre'*,

. ) Tim Green', Chongli Qin', Augustin Zidek', Alexander W. R. Nelson', Alex Bridgland',
Received: 2 April 2019 Hugo Penedones’, Stig Petersen’, Karen Simonyan', Steve Crossan', Pushmeet Kohli',
Accepted: 10 December 2019 David T. Jones??, David Silver', Koray Kavukcuoglu' & Demis Hassabis'

The original AlphaFold (DeepMind)




Deep learning of inter-residue distances

« Key input: multiple sequence alignments
* Key ideas

— Predict the distance between each pair of amino acid
residues, rather than just predicting whether or not
each pair of residues is in physical contact

— Consider covariation not just between residues at two
positions, but between entire blocks of adjacent
residues

 This allows one to pick out patterns associated with
structural motifs (e.g., alpha helices)

— Train deep neural networks rather than fitting simpler
statistical models with fewer parameters

58



Deep learning of inter-residue distances

* Then search for a 3D structure that minimizes differences from the
predicted distances
— Certain terms of pre-existing energy functions (e.g., Rosetta all-atom

energy function in the case of AlphaFold) are also incorporated at this step
to ensure that local structural arrangements are physically reasonable.
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Deep learning of inter-residue distances

* These methods improved substantially over the
best previous structure predictions for proteins
for which one can’t identify structural templates

* Limitations
— Don’t incorporate any template information

* No substantial improvement over template-based
methods when templates are available

— Incorporate only very limited information on local
physics, and it's not part of the machine learning

« Limits prediction accuracy for side chains
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Second-generation deep learning
methods: learning the entire structure



This "second generation” is what you've
most likely heard about—
lots of press coverage

Guardian Do 2020 AlphaFold Is The Most
DeepMind Al cracks 50-year-old Important Achievement
problem of protein folding In AI—Ever

Rob Toews Contributor ®
T write about the big picture of artificial intelligence.
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Journal covers from August 2021

RoseTTAFold

(U. Washington
and academic
collaborators)

AlphaFold 2
(DeepMind)

PREDICTING

SThitruees

« Both AlphaFold 2 (AF2) and RoseTTAFold are deep learning
methods for protein structure prediction, with similar architectures
* Note that:

— AlphaFold 2 is completely different from the original AlphaFold, but both
are officially named “AlphaFold”

— RoseTTAFold structure prediction is very different from Rosetta structure
prediction, though both are part of the Rosetta project



Second generation: deep learning of
entire structure

* Both AlphaFold 2 (AF2) and RoseTTAFold:

— Take both multiple sequence alignments and

templates as inputs (that is, sequences and structures
of related proteins)

— Learn favorability of local arrangements of amino acid
residues and their constituent atoms (i.e., side-chain

packing) from very large numbers of available protein
structures

— Learn how to combine these sources of information
effectively
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Grertrt |

Input sequence

AF2 architecture

sequences and
structures of
related proteins

Jumper et al., Nature, 2021
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and the other by pairs of
positions. Each informs

the other.

———— (T} AR AR s R EAAE NE 4 A High
<_.--_._\ @ ; 11t _ rﬁ, —m g_’p 1L confidence
“Genatic. '(“')' _’9 representation —%- _"@
| database Dreitot B el 3
\_search_ Rt R9 R
MSA N
£ Structure %IM
_< voformer module I
(48 blocks) (8 blocks) | —™ <% ViV
N—(Paiing)—— j Pai Pai |
- REEEE Gu)—» - es:n'tation . — repras;:;ation 1L 3D structure
' —_-‘\ - ‘ (r.,r,c) {rr.c)
— 3:,":,::;zj—— -I — I
Sl
Templates ‘
— « Recycling (three tifheq) ]
Identify Iteratively refine two Add a third representation:

position and orientation of
each amino acid. Iteratively
refine these, then predict
conformation of each side
chain



AF2 In action

Recycling iteration 0, block 01
Secondary structure assigned from the final prediction

 AF2 doesn’t actually “see” most of these intermediate
structures. They are guesses of what would have been

predicted based on intermediate states (layers) of the
network.

« Structure is initially “compressed” because all residues are
initially superimposed



Also note ...

 AF2 and RoseT TAFold are highly customized
architectures, incorporating prior knowledge
about proteins. This isn’t “generic” machine
learning.

« These methods combine Cartesian coordinate
and torsional angle representations of proteins

* Beyond the machine learning, these methods
iInvolve:

— Pre-processing: calling other software to select and
align homologous sequences and to select templates

— Post-processing: refine results with an existing
molecular mechanics force field 61



|s the protein folding problem solved?

* The original “protein folding problem” was
determining how a protein gets to its folded
structure

* AlphaFold, RoseTTAFold, etc. tackle a different
problem: protein structure prediction

— They do this very well, and it's a very important
problem!

— These methods don’t find a protein’s structure the way
the protein does
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Strengths of AF2 and RoseTTAFold

Major improvement in accuracy of previous state
of the art
Work automatically for multi-domain proteins

— No need to predict separate structures for each
domain, then piece them together

Also predict structures of multi-protein complexes



Limitations of these methods

* Predictions not perfect
— E.g., side chain orientations often incorrect
— Need to determine impact on applications: for example, ligand
docking
« More important, in my opinion: prediction of a single structure
per protein, under unspecified conditions

— This is by design. In the CASP (Community Assessment of Structure
Prediction) competition, competitors do not have access to the
experimental structure or any information about the conditions under
which its was solved.

« Which ligand is bound, if any? Is the protein bound to other proteins?
What is the pH? Etc.

— But when one works with an experimental structure, the conditions
are known, and that information is important in applications.

« Often experimental structures are available under different conditions
(e.g., with different ligands bound), and those structures are different.



RNA structure prediction



Journal covers from August 2021

Protein structure prediction

AlphaFold
(DeepMind)

RoseTTAFold
(U. Washington
and academic
collaborators)

PREDICTING

STRUCTURES .

RNA structure prediction

The race for toom-temporature
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Key difference from protein
structure prediction: training
data is highly limited
(trained on roughly a million
times less data than
AlphaFold)
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The challenge

« Experimental structure
determination is harder for RNAs
than proteins
— Human genome contains ~30x

more RNAs than proteins, but 100x
more protein structures have been
solved

* This makes computational
prediction of RNA structure
especially valuable, but severely
limits data available for machine
learning
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Given only a genetic sequence, our neural
network predicts accuracy of each model,
so that we can select the most accurate one

* Note: we use no information about related
sequences or templates



The network learns from scratch how to
evaluate the quality of an RNA structural model

* We represent a molecular structure as a collection
of atoms, specitying only 3D coordinates and
element type (C, N, O) of each
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Structural motifs in biomolecules

« We'd like our network to learn to recognize structural motifs
« Such motifs can occur at any position and orientation

» Large-scale structural motifs are typically composed of small-
scale motifs with specific relative locations and orientations
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A novel neural network enables
effective learning from limited data

« Atomic Rotationally Equivariant Scorer (ARES)
— Operates directly on 3D atomic coordinates

— Equivariance: translation and rotation of any set of atoms
leads to corresponding transformation of these atoms’ features

Structural model of RNA
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Strengths of ARES

* Outperforms previous methods at blind RNA
structure prediction

* Requires very little training data
— Trained on only 18 RNA structures

— RNAs used for training are much larger than those used
for testing

— About one million times less training data than AF2
« Generalizable:
— Incorporates no prior information about RNA

Testing
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Limitations of ARES

* Absolute prediction accuracy remains far
behind that of the best protein structure
prediction methods

* Relies on another method to generate
candidate structural models

* Again, prediction is independent of
experimental conditions
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